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The rolling of a ball without slip on a fixed surface is a classical example of a non-holonomic system 
[ 11. As a rule, non-holonomic systems do not admit of an invariant measure, unlike Hamiltonian systems, 
which always have a standard invariant measure (moreover, a symplectic 2-form is preserved) (21. One 
of the best known examples is perhaps the “Celtic stone” [3], whose rotations in one direction are 
asymptotically stable but in another direction are unstable (see, e.g. [4,5]). 

In the problem of a symmetrical ball rolling on a surface, investigations have been devoted in the 
main to special cases (special types of surface) in which the system has additional first integrals 16-81: 
it has turned out that, in all the special cases considered, the system also has a smooth invariant measure. 
It will be proved below that the measure is preserved in the general case also, provided the external 
force is applied at the centre of the ball and satisfies certain additional conditions, which, in fact, mean 
that there is no dissipation in the system. A typical example is the force of gravity. This result is also 
valid in the “limiting case” in which the radius of the ball tends to zero. 

The existence of an invariant measure is of fundamental significance for the dynamics of the system. 
If the external forces are potential forces, the system has a first integral - the energy integral. If the 
energy level is a compact manifold, one can confine the system to it (and it will preserve a certain measure 
on that manifold) and use ergodic theorems, such as PoincarC’s recurrence theorem, Birkhoff’s theorem, 
etc. [9]. Another obvious corollary of the existence of an invariant measure is the non-exislence of 
asymptotic stability and attractors. 

1. FORMULATION OF THE PROBLEM 

Consider an absolutely symmetrical ball of radius Y and mass m, rolling on a surface Z defined (locally) 
by smooth functions in Euclidean three-space. By an absolutely symmetrical ball we mean a ball whose 
centre of mass is its geometrical centre and whose central tensor of inertia is spherical. An external 
force is applied to the ball, the point of application being the centre of the ball. 

The equations of motion of the ball along the surface C are conveniently written, without using the 
D’Alembert-Lagrange equations, in the following form 

mti = R-+-F, Jh = -rNxR, v = roxN (1.1) 

where J is the moment of inertia of the ball about its centre, v is the velocity of the centre, o is the 
angular velocity of the ball, R is the reaction of the surface C, F is the external force, and N is the unit 
normal to the surface X at the ball’s point of contact with the surface, pointing toward the centre of 
the ball. The non-holonomic constraint defined by the last equation of (1.1) is the condition that the 
ball is rolling without slip. We shall assume that the curvature of the surface C is sufficiently small (or 
that the radius r of the ball is small), so that the ball always touches the surface at one point only. 

Remark 1. Generally speaking, in the context of a formal-anxiomatic definite of the motion of systems with 
constraints (such as, e.g., postulating the D’Alembert-Lagrange principle), both the physical meaning of the basic 
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principles and the limits of applicability of the theoretical models remain unclear. It turns out that the classical 
non-holonomic model is a limiting case of the realization of a constraint by forces of viscous tension (see, e.g., 
[9-l 11). For dry friction models in problems involving the rolling of rigid bodies see [ 12, 131. 

Let C’ denote the surface along which the centre of the ball is moving. Obviously, the original surface 
X is a wave front for C’ (it is an envelope of the wave fronts [a sphere of radius r] for each point of C’). 

Proposition 1. The normal to the surface C’ drawn from the centre of the ball coincides with N - the 
normal to I; at the ball’s point of contact with the surface. 

This is a well-known fact in the theory of motion of wave fronts, but we shall present a more intuitive proof. 
Let the ball touch the surface C at a point X. Take the normal N to C at this point. The set of admissible velocity 
vectors of the centre of the ball is a plane orthogonal to this normal. But any velocity vector of the centre of the 
ball lies in the tangent plane to the surface Z’ at the pointx’ where the surface is cut by a straight line drawn parallel 
to N through the point x where the ball touches the surface Z. Thus, the segment [x, x’] parallel to N will also be 
orthogonal to C’ 

Let US fix the surface C’ and, varying the radius of the ball r, consider the surface Z as variable. This 
is an equivalent (and generally more convenient) formulation of the initial non-holonomic problem, 
going back as far as Routh. The motion of the ball will be described, as before, by Eqs (Ll), and the 
unit vector N will be the normal to C’ drawn from the centre of the ball (by Proposition 1); the centre 
of the ball is moving along that surface. 

Put w = ro and divide the second and third equations of system (1.1) by r. We obtain the equations 

mti = F+R, Mti = -NxR, v = wxN (1.2) 

which do not contain r - they are exactly the same as system (1.1) in which r = 1. Here J = M?, where 
the number A4 is independent of r. In what follows we shall use system (1.2); the initial system (1.1) 
may be retrieved from (1.2) by the substitutions w = rw and J = 442. 

Proposition 2. The equations of the limiting problem as r + 0 are equivalent to system (1.2). 

Indeed, Eqs (1.2) are invariant to variation of the radius r of the ball, since we have assumed that it is the surface 
I;’ that is held fixed. Thus, the limiting equations are equivalent to the initial system with r = 1, they do not degenerate 
and do not transform, for example, into the equations of motion of a point on the surface Z:’ under the action of 
the force F. 

2. THE EQUATIONS OF MOTION 

Let us substitute the expression for the reaction R following from the first equation of system (1.2) into 
the second equation. We obtain 

Mb+ = -Nx(mzi-F) = -Nx 
! 

m$(wxN)-F 
> 

= -Nx(m((tixN)+(wxIli))-F) 

where ?$ is the vector with components (dNJax’)Uj(i, i = 1, 2, 3) and X! are Cartesian coordinates. 
Since it46 = -N x R, the derivative ti is orthogonal to the normal N; consequently, 

Nx(tixN) = ti 

We therefore obtain from the preceding equality 

(M+m)d = -mNx(wxl\i)+NxF (2-l) 

Now define a scalar variable u = (w, N), namely, the projection of the angular velocity of the ball 
onto the normal to the surface. Note that 

w = UN-vxN, Nx(wxl\i) = -d 

The vector product of Eqs (2.1) by N (on the right) is 

(M + m)(ti x N) = mul\ixN+(NxF)xN 



Invariant measure in the problem of a symmetrical ball rolling on a surface 341 

Hence it follows that 

~xN = d 
dt 

(wxN)-wxIli = ti-(UN-vxN)xl\i 

Thus, 
(M+m)(zi-(UN-vxN)xN) = mdxN+(NxF)xN 

Since (N, fi) = 0, it follows that (u x N) x fi = (u, fi)N, and 

ti+(v,&)N 
M = -uNxfi+ 

M+m &(F- (F, N)N) (2.2) 

We now multiply Eqs (2.1) scalarly by N. This gives 

(M+m)(ti, N) = 0 

Therefore 

ci = -$(w, N) = (w, ni) 

Consequently 
li = ((llix N), v) (2.3) 

Together with the relationi = U, Eqs (2.2) and (2.3) from a closed system of equations. If we formally 
put A4 = 0, Eq. (2.2) will describe the motion of a point of mass m on the surface C’ under the action 
of the force F. System (2.2), (2.3) has also been obtained by different arguments, in the case when F 
is the force of gravity [7]. 

Remark 2. Let F be a potential force. Then system (2.2), (2.3) has a first integral (the energy integral). It is obtained 
by the standard procedure: take the scalar product of Eq. (2.2) by (M + m)u and that of Eq. (2.3) by M~A. add, 
and use the fact that (N, u) = 0. 

3. INVARIANT MEASURE 

Suppose the surface is (locally) defined Z in Cartesian coordinates (x’, x2, x3) by an equation x3 = 
f(x’, .x’). The projection of Eq. (2.1) onto the x1, x2 axes gives a system 

$---gi’Qj 
> 

= &WA;& i,j,k = 1,2 (3.1) 

where 9” is the induced metric on the surface C’, expressed in terms of the local coordinates (x’, x2) on 
C’, qk are the Christoffel symbols compatible with the metricg’l, and Q is the generalized force defined 
by projecting F onto the surface Z’. If the right-hand sides of Eqs (3.1) were to vanish, we would obtain 
the usual Lagrange equations (to be solved for the accelerations) for the motion of a point on the surface 
C’. It is clear that if the original force F is a potential force, Q will also be a potential force. 

Lemma 1. The quantities A;$ (i, j, = 1,2) on the right of Eqs (3.1) may be expressed as 

A;.$ = h,lf, A;.d = -h&j 

where 

h, = (flzvl + f22v2)fj, h, = (f ,,v’ + f 12v2Vf, ? = dmh 

fi = afta?, fij = a2flaxial, vi = ii, i, j = i,2 

The proof proceeds by direct calculation: we have to find the first two components of the three-dimensional 
vector N x N. We have 
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N = (f,>f2- 1)/f 

hi= -(f,h,+f*h*)(f,~f*-l)lj*+(~*~~,~O) = 

= (-f,f*h, + (1 +fi)h,, -f,f*h*+ (1 +f:Y$ f,h* +f2Wf2 

Having the components of the vectors N and N, one can readily determine their vector product. 

Theorem 1. Let a system of the form (3.1) (of arbitrary dimensions n) be closed by adding an equation 
in u: 

ti = V(x, 1,t) (3.2) 
where U is an arbitrary smooth function of x and i, and A,!’ are functions of x and t. Let the forces Q 
have the form 

Qi = $~-~+gijBj2k+Q: 

where I/ = bj(x, t)i.’ + Va(x, t) is a generalized potential, the matrix B(.x, t) has zero trace, and the non- 
potential forces Ql are independent of the velocities. Suppose the trace of the matrix A vanishes: 
trA =A: f . . . + A: = 0. Then system (3.1), (3.2) has a smooth invariant measure. 

Roughly speaking, the conditions imposed in the theorem on the generalized forces Q are satisfied 
if there is no dissipation in the system. For example, they are surely satisfied if system.($l) is a natural 
Lagrangian system with M = 0, and the quadratic part of the Lagrangian is then giji’iJ/2. 

Proof The classical Lagrange equations of the second kind are obtained from system (3,l) by 
“lowering indices.” Apply a Legendre transformation with respect to the velocities ii-‘: pi = gijiJ + bi. 
We obtain “perturbed Hamiltonian equations” 

.i aH x = -, 
api 

ri = V(p, x, t) 
(3.3) 

where the terms Qi are independent of the momenta p. 
The divergence of the right-hand side of sy_stem (3.3) equals the same of the product of u by the trace 

of the matrix K and the trace of the matrix B. But the trace of a matrix is an invariant, and therefore 

tr;i M = -trA M+m =0, trg=trB=O 

Thus, the standard volume is conserved in the phase space @, X, u). 

Corollary. In the classical problem of a ball rolling on a surface and in the limiting case when the 
radius of the ball tends to zero, there is a smooth invariant measure if the external force satisfies the 
condition of the theorem (for example, if it has a generalized potential). 

Proof By Lemma 1, in the system under consideration we have A i + A2 * = 0. For the relation with the limiting 
case when the radius of the ball tends to zero, r + 0, see Proposition 2. 

Remark 3. Suppose all the functions do not depend explicitly on time and that the forces Q are poteytial forces. 
Then, in the problem of the rolling ball, the function U may be found from the condition that H + Mu /2 is a first 
integral (see Remark 2). Indeed, since 

dH 
27 

+Muli = 0 

it follows from Eqs (3.3) that 

+ MuU(p, x) = 0 



Invariant measure in the problem of a symmetrical ball rolling on a surface 349 

Consequently 
-i aH 

MU = -AipjG, 
13.4) 

4. DISCUSSION 

The theorem just proved answers the question as to the existence of an invariant measure both in the 
general case of a symmetrical ball rolling without slip on a surface, under fairly general assumptions 
as to the nature of the applied forces, and in the limiting case when the radius of the ball tends to zero. 
This limiting case is of independent interest, as an example of a system with “hidden motions”: the 
motion of a particle on a surface is defined not only by local coordinates on the tangent (or cotangent) 
bundle, but also by a certain, additional parameter u - the “spin” of the particle. From that point of 
view, system (3.3), (3.4) is particularly interesting as a generalization of the problem of a rolling ball. 

An interesting “inverse” problem has been considered [14]: a convex body whose inertia tensor is 
spherical is rolling an a fixed sphere (there is no force field); the results also imply the existence of an 
invariant measure in the “dir&’ problem of a ball rolling on a convex surface, in the case when the 
external force depends only on the position of the system. 

One can consider another limiting problem, when the radius of the ball remains unchanged but the 
moment of inertia tends to zero, A4 + 0. This meansthat the mass of the ball collapses to its centre. 
System (3.3) is regular as .A4 + 0 (the coefficients Ai are quantities of the same order as M when 
M + 0). This approach m&s it possible to utilize the rich apparatus of perturbation theory to analyse 
the dynamics in the case of small M. It is interesting to compare system (3.3) for small values of M with 
so-called “weakly non-holonomic” systems, see [15]. 
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